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Taylor’s hypothesis of frozen flow has frequently been used to convert temporal exper-
imental measurements into a spatial domain. This technique has led to the discovery
of long meandering structures in the log-region of a turbulent boundary layer. There
is some contention over whether Taylor’s approximation is valid over large distances.
This paper presents an experiment that compares velocity fields constructed using
Taylor’s approximation with those obtained from particle image velocimetry (PIV),
i.e. spatial data, obtained in the logarithmic region of a turbulent boundary layer.

1. Introduction
The aim of this paper is to experimentally check the extent of the accuracy of

Taylor’s hypothesis when applied to a turbulent boundary layer. This is done by
means of an experiment which allows the production of both a spatial field, and a
pseudo-spatial field using Taylor’s approximation. These fields are compared both
qualitatively and quantitively to assess the streamwise extent over which Taylor’s
approximation can be considered valid. Throughout this paper we use x, y and
z as the streamwise, wall-normal and spanwise coordinates respectively, U as the
streamwise velocity and u as its fluctuation.

1.1. Long structures

A structural element of wall-bounded turbulent flow that has recently received much
attention is the “regime of very long meandering positive and negative streamwise
velocity fluctuations”, as described in Hutchins & Marusic (2007a). Figure 1, from
Hutchins & Marusic (2007a), shows a sample of a hot-wire rake positioned at
y/δ =0.15 in a Reτ = 14 380 boundary layer flow. A very long feature can be seen
meandering through the boundary layer for over 20δ (over 6.5 m at the experimental
Reynolds number). This is compared with the particle image velocimetry (PIV) result
shown in the inset (b) in figure 1, which is said to represent a snapshot of the much
longer structure, (a). The meandering nature of this structure is said to be the reason
why its true length is not apparent in one-dimensional correlations and spectra, an
explanation that is quite plausible. However, spanwise hot-wire rake measurements
made to investigate these structures only give instantaneous measurements at a
single streamwise location. The ability to show the presence of a long meandering
structure is provided by taking the fluctuating signals from the rake to reconstruct the
instantaneous spanwise profile of the streamwise velocity fluctuation, and projecting
it in time using Taylor’s hypothesis of frozen convection to construct the structure
over a long domain.
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Figure 1. (a) Example rake signal at y/δ =0.15, for Reτ =14 380, and (b) PIV
snapshot, from Hutchins & Marusic (2007a). Note their y is our z.

As well as being found in the log and lower wake regions of the turbulent
boundary layer, these features are also found in pipe and channel flow (Kim &
Adrian 1999; Monty et al. 2007). They have been found during PIV experiments
(Ganapathisubramani, Clemens & Dolling 2006), and in direct numerical simulations
(Ringuette, Wu & Pino Martin 2008). Long structures found using these techniques
give weight to the idea that some kind of long structures do exist but do not confirm
their extent in the streamwise direction. Structures have been found to span the whole
streamwise extent of the velocity fields produced, however, PIV experiments have
been restricted to a limited spatial region due to the constraints of the field of view
of the camera, and of the difficulty in producing extensive light sheets. The largest
possible streamwise extent of simultaneous measurement has so far been much less
that the 20δ over which these structures are said to exist. Some aspects of long
structures that have proved of interest are the proportion of the Reynolds shear stress
they contain, which is found to be substantial (Ganapathisubramani, Longmire &
Marusic 2003; Guala, Hommema & Adrian 2006), and their influence on the near-wall
motions (Hutchins & Marusic 2007b; Abe, Kawamura & Choi 2004). There has also
been a great deal of research regarding the relationship between long structures and
hairpin vortex packets, see Adrian (2007) for an excellent review of these interesting
aspects.

1.2. Taylor’s hypothesis

In Taylor (1938) Taylor’s approximation of frozen flow states that “if the velocity
of the airstream which carries the eddies is very much greater than the turbulent
velocity, one may assume that the sequence of changes in U at the fixed point are
simply due to the passage of an unchanging pattern of turbulent motion over the
point”. This can be formulated (as in Townsend 1976) as

U (x, t) = U (x − Ucτ, t + τ ) (1.1)

for not too large values of τ (the time delay), and where Uc is the assumed convection
velocity. This approximation is thought to be substantially accurate for boundary layer
flow provided that u2/U 2

c is small (Townsend 1976). This provides the ability to take
measurements at a single streamwise location and project spatially using temporal
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data, i.e. to use the measurement taken at time t + τ as an instantaneous pseudo-
spatial measurement located at an offset of Ucτ from the measurement location.
The small variations of τ that are possible due to the high temporal resolution of
a hot wire allow for the production of a contiguous velocity field (Uc is assumed
constant). However, there is some debate over the validity of Taylor’s hypothesis. For
example, Lin (1953) showed that it is only strictly valid if the turbulence level is low,
viscous forces are negligible, and the mean shear is small (see also Lumley 1965). It
is important to understand the extent to which Taylor’s hypothesis can be used to
accurately reconstruct flow fields in this way, as the long structures that are being
found using this method could well have an important influence on our understanding
of the fundamental nature of wall-bounded turbulence.

2. Experiment
The experiments were conducted using a high-speed particle image velocimetry

(PIV) system in the Cambridge University Engineering Department’s turbulent
boundary layer water tunnel research facility. This unique facility has a
0.9 m × 0.5 m × 8 m long working section, and has been specially designed to produce
thick turbulent boundary layers that may be measured with excellent spatial
resolution. The experiments involved using a measurement plane parallel to the
wall to obtain a velocity field in the streamwise–spanwise plane at a height above
the wall at which long structures have previously been found (y/δ =0.16). The flow
is tripped at the inlet to the tunnel and the measurement area is 4–5 m downstream.
At this location the boundary layer thickness is δ = 90 mm, the free-stream velocity is
U∞ =0.69 m s−1, the Reynolds number based on momentum thickness is Reθ = 4685,
and, at the measurement height, the local mean velocity is U =0.57 m s−1, with
turbulence intensity, urms/U = 10 %.

2.1. Velocity fields

The size of the measurement area was dependent on the field-of-view (FOV) of
the camera. To obtain a large FOV two cameras were placed side-by-side in the
streamwise direction. A single calibration plate (which covered the FOV of both
cameras) was used to calibrate both the cameras. This calibration information was
then used to merge the independent vector fields from each camera, creating one large
vector field of approximate size 6δ × 3δ (the longer dimension being in the streamwise
direction).

Two types of fields are discussed in this paper. They are referred to as ‘spatial
fields’ and ‘Taylor fields’. Spatial fields are simply the vector fields obtained from
the standard analysis of the PIV images. However, the use of a high-speed image
capturing system means that there is a very short time delay between the vector
fields. This meant that it was possible to take a single spanwise line of vectors from
each vector field (imitating the measurement ability of a hot-wire rake) and then use
Taylor’s hypothesis to concatenate the lines of vectors to generate a pseudo-spatial
field (similar to that shown in figure 1); the ‘Taylor field’. Comparison of the Taylor
field with the spatial field gives the ability to identify and quantify differences between
the two fields, and hence the deficiencies of Taylor’s approximation.

In this paper the focus is on the use of Taylor’s hypothesis to form long meandering
structures, which are obviously large-scale flow features. Therefore we may consider
that the small scales are not important. To enable the examination of only the large
scales in the velocity fluctuation field it is possible to use a two-dimensional Fourier
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Figure 2. Space–time correlation; in three-dimensional (a) and two-dimensional contour plot
(b). The black line shows the curve along which the change in correlation is minimized, the
gradient of which is the convection velocity, Uc =0.58 m s−1.

filtering technique on the spatial and Taylor fields. This allows the removal of the
small-scale motions in the fluctuating velocity fields. The filtering was performed
by convolving the two-dimensional fluctuating velocity field with a two-dimensional
Gaussian kernel. This cut out the high frequencies in the Fourier transform of the
fluctuation field, and hence the small scales. The range of scales that are removed
depends on the width of the Gaussian used. In this paper the width of the filter is
defined by the standard deviation (σ ) of the Gaussian in real space, given in terms
of the boundary layer thickness (δ). Note that when filtered fields have been used in
this paper it is explicitly stated, otherwise the unfiltered data has been used.

2.2. Convection velocity

The correct construction of the Taylor field is dependent on the velocity with which
the flow is convected. The convection velocity (Uc in equation (1.1)) determines how
far downstream it is appropriate to locate the measurements for a given time delay.
It is often taken as the mean velocity at that height in the boundary layer, as in
Hutchins & Marusic (2007a) for example. However, it was thought wise to check that
this was the appropriate velocity to use. This was done by means of a space–time
correlation using the streamwise velocity fields

Ruu(�x, z, �t) =
u(x, z, t)u(x + �x, z, t + �t)

urms (z)urms (z)
(2.1)

for a given y location. The outputs from equation (2.1) can be averaged across all
values of z as the correlation is not dependent on spanwise location. Figure 2 shows
the resulting space–time plot.

There are several methods that have historically been used to calculate convection
velocity, see (Goldschmidt, Young & Ott 1981) for several of these. Which one is
used is normally dependent on the data available. Generally the convection velocity
is given by �x/�t , where �x and �t are changes in the spatial separation and time
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delay respectively, which are chosen so as to minimize the decrease in the correlation
Ruu(�x, �t), (as given by equation (2.1) and plotted in figure 2), i.e. the following
equation is maximized (least negative), see Fisher & Davies (1964):

dRuu(�x, �t) =
∂Ruu

∂�t
d�t +

∂Ruu

∂�x
d�x. (2.2)

The most obvious method to calculate the convection velocity when using a pair of
hot wires is to maintain a fixed streamwise separation. Therefore the second term
in equation (2.2) is zero and the convection velocity is given by the �t at which
∂Ruu/∂�t is zero, i.e. the peak in the Ruu vs. �t curve. Alternatively, using a fixed
time delay, the streamwise separation is varied to maximize the correlation and hence
the first term in equation (2.2) is dropped. As our PIV data allow the calculation
of the two-dimensional space–time curve (figure 2), both terms can be kept. It is
obvious that |dRuu(�x, �t)| is minimized along the ridge of figure 2, as indicated by
the black line on the contour plot. The convection velocity is simply given by the
gradient of that line. In this case it is found to be Uc = 0.58 m s−1, which corresponds
very well with the local mean velocity (U/U∞ = 0.82, Uc/U∞ = 0.84), demonstrating
that the local mean is a suitable estimate for the convection velocity. It is noted here
that the filtering described in § 2.1 did not have a significant effect on the convection
velocity when it was calculated in this way using the filtered fields. This is perhaps
not surprising since while it has been found that different wavenumbers convect at
different velocities (Krogstad, Kaspersen & Rimestad 1997), this mainly affects the
small scales.

3. Results and discussion
The comparison of the Taylor fields with their corresponding spatial field shows

the accuracy of Taylor’s hypothesis when applied to this type of flow. There are a
number of ways in which the two types of field can be compared. The most obvious
is to view a graphical representation of the two fields and visually spot differences
between them. This method is quite informative as it gives an overall idea of the
accuracy of Taylor’s approximation as well as highlighting certain regions of the flow
where the approximation has deficiencies (see § 3.1). There is clearly a need to quantify
the accuracy of Taylor’s approximation, and the correlation of the Taylor field with
the spatial field (§ 3.2) has been used to show the relationship between the spatial and
Taylor fields, and the way in which it varies with downstream distance. This allows
some deductions and comments to be made regarding the extent to which Taylor’s
approximation is valid.

3.1. Visual comparison

As the long structures that are the focus of this paper are characterized by patterns
in the streamwise velocity fluctuations, it is most pertinent to visually examine the
plots of streamwise velocity fluctuations of the spatial and Taylor fields side by side.
An example of a comparison of the spatial and Taylor fields is shown in figure 3.
We can immediately see many similarities between them; they are a reasonably good
match. However, it is possible to identify distinct regions of difference between them.
Some of these areas are highlighted by the rings and boxes in figure 3. The differences
between the two fields can be categorized into three types:

(i) Differences that fall under the first category are indicated in figure 3 by the
boxes. These are major differences in the two fields where a large-scale feature is seen
to be present in one field and entirely absent from the other. In figure 3 the smaller
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Figure 3. Comparison of the spatial and Taylor fields of the streamwise velocity fluctuation
over a 6δ × 3δ area: unfiltered (top) and filtered (bottom). (Colourmap scale is in m s−1).

box highlights a low-speed region that is found in the Taylor field but not in the
spatial field. The larger box is a high-speed region present in the spatial field and not
the Taylor field. From the examination of many comparisons it is evident that errors
of this nature are found with reasonable frequency (generally 1 or 2 per field). It is
also possible to assert that the vast majority of these type of errors occur in the latter
parts of the field, generally x/δ > 4.5, and that they are normally between 0.5δ and
1.5δ in streamwise extent.

(ii) Differences of the second type have been marked by rings/ellipses in figure 3.
These are also large-scale differences but here it is possible to see, by examining the
surrounding field, that they may be out of place in the Taylor field when compared
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to the spatial field, as opposed to simply absent. These types of differences are
considerably harder to spot because they are often subtle and the offset is not
always very large. However, figure 3 shows clearly that the flow features seen to
be enclosed by the rings in the spatial field are not so enclosed in the Taylor field.
It is possible to offer an explanation for these differences. As we can see from the
spatial field it is commonplace for the long structures to meander in space. The
pertinent difference between the Taylor and spatial fields is that the spatial fields are
instantaneous, whereas the Taylor fields are pieced together from a series of time-
stepped measurements. Therefore the fact that structures appear to have meandered
differently in the Taylor field when compared to the spatial field implies that the
long structures meander in time as well as space. It is no surprise at all that Taylor’s
approximation fails to capture the meandering of structures in time, as Taylor’s
hypothesis assumes structures to be ‘frozen’ in time (basically they are assumed to
be rigid objects convecting with speed Uc). The differences identified in this category
occur in the latter part (>3.5 δ) of the field.

(iii) The third type of differences are the minor variations that are present
throughout the whole extent of the field. These are mostly seen as subtle differences
in the magnitude of the velocity fluctuation, rather than being in the pattern itself, so
are hard to pick out individually, and not particularly important if we are considering
long structures.

Shown in lower half of figure 3 are the spatial and Taylor fields that have been
filtered as described in § 2.1. It is clear that some of the smaller scales have been
removed, as is the intention of the filtering. Along with the small scales, some of the
errors of category (iii) have also gone, although clearly some still remain. However,
it is also plainly obvious that the large-scale differences highlighted by the rings and
boxes (and described above) are still present in the filtered fields.

It is possible to see from the example shown in figure 3 a situation where the Taylor
field could lead to incorrect interpretation regarding the long structures. The region
of low velocity that starts at (z/δ = 2.2, x/δ = 3) and continues to (z/δ =2, x/δ = 6.3)
in the Taylor field is not present as a whole in the spatial field, although it is in
parts.

One would obviously expect the accuracy of Taylor’s approximation to deteriorate
as it is used to project over increasingly large distances, which is highlighted by the
fact that the differences described above occur more frequently with increasing x/δ.
It is necessary to quantify both the difference between the spatial and Taylor fields,
and how this difference varies with increasing downstream projection.

3.2. Correlation of Taylor and spatial fields

The correlation of the Taylor field with its corresponding spatial field has been
used as a quantitative measure of the similarity between the two fields. Each pair of
realizations is correlated, and the average correlation over all realizations is calculated.
This two-dimensional correlation map is then averaged in the spanwise direction as
the correlation is only expected to vary with streamwise distance, not spanwise. The
correlation is shown in figure 4, with the correlation value calculated as given by the
following equation, where all values are local and the subscripts S and T indicate the
spatial and Taylor fields respectively:

RuSuT
=

uSuT√
u2

S

√
u2

T

. (3.1)
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Figure 4 shows different curves for different levels of filtering. These will be discussed
later; initially we will concentrate on the unfiltered results (squares). The curve shows
an approximately linear decrease in the accuracy of Taylor’s approximation with
streamwise projection distance. The value of the correlation (RuSuT

) falls to 0.19 at the
greatest extent of the FOV (≈6.3δ). Projecting the trend forwards using a linear fit
indicates that the correlation value would drop to zero at x/δ = 9.32. However, this
linear trend cannot continue indefinitely, and this value should be taken simply as an
indicator of the rate of decay of the correlation. Considering the observations from
the visual comparison (§ 3.1) the most likely reason for the drop in the correlation is
that the structures are distorting in time.

By definition the correlation is equal to 1.0 at x/δ = 0. The next point on the curve
(i.e. the first point that uses Taylor’s approximation) shows a correlation value of
0.63. This implies that a large inaccuracy is immediately introduced when Taylor’s
approximation is employed. To a certain extent, this is unexpected, because the
perceived accuracy of the Taylor fields we examined visually was very high over very
short displacements (see § 3.1). However, when we consider the inaccuracies that we
are likely to notice by eye, i.e. large-scale differences, it is less surprising to discover
that we had not fully appreciated the errors over short distances. Now consider the
scale of the features that we are particularly interested in: the large-scale motions.
Fourier filtering, described in § 2.1, can be used to remove the small-scale motions
from the velocity fluctuation fields before they are correlated, therefore removing the
effect of the smaller scales on the correlation value. The results of this procedure for
varying levels of filtering are shown in figure 4. (Note that the higher the value of σ

the greater the extent of the filtering, i.e. the more scales are cut out.)
From figure 4 it is apparent that filtering out the small scales increases the

correlation value across the whole range of x/δ. Indeed, the more extreme the
filtering the greater the correlation. The filters have been defined by the standard
deviations of the Gaussian in terms of δ, σ/δ =0.04, 0.06 and 0.08. These correspond
to Gaussian total widths (6σ ) of 0.24δ, 0.36δ and 0.48δ respectively. According to the
two-point correlation of the streamwise velocity fluctuation in Hutchins & Marusic
(2007a), the spanwise width of long structures at approximately the same height is
0.4δ. Therefore increasing the width of the filter any more would start to have an
effect on the long structures themselves.
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It should be noted that the correlation value at x/δ =0 is not equal to 1.0 for the
filtered results; this is due to the whole field filtering contaminating the first row of
values, meaning that the initial values of the spatial and Taylor fields are no longer
identical. There are also the usual ‘end effects’ associated with Fourier filtering, which
have been mitigated by the use of zero-padding, but some very small effect does
remain.

The significant increase in the correlation with filtering adds some weight to the
idea that the initial drop-off is predominantly due to the small scales, especially as the
increase is most apparent at small x/δ where small scales will have the largest effect.
This is shown by the small increase in gradient in the filtered fields when compared
to the unfiltered field. The projections at which RuSuT

= 0 are given on figure 4, and
there is a clear increase with filtering.

It is possible to argue that, if we are only interested in the large-scale motions,
then we can use Taylor’s approximation over a greater projection distance. Indeed,
it would be possible to routinely filter the velocity fields that have been produced
using Taylor’s approximation in this way, so that the obvious small-scale errors were
removed. The correlation was also performed with only the Taylor field filtered (as the
Taylor field would be the only one available in a normal experiment). This increased
the correlation significantly, although not quite as much as when both fields are
filtered.

It is not possible to state a universal limit on the use of Taylor’s hypothesis, since
this will vary depending on the experiment. The information here, however, should
provide some guidance.

Finally, we note that although it does appear to be advisable to limit the projection
distance over which Taylor’s hypothesis is used, if the experiment has some streamwise
extent (e.g. PIV), then it is possible to use Taylor’s approximation to project both
forwards and backwards in time by the limit of the projection distance, as was
demonstrated in Dennis & Nickels (2007). This effectively doubles the length of
possible projection distance. The spatial field can then be sandwiched between the
two Taylor fields, giving a reliable field of some considerable length.

4. Conclusions
This experiment has demonstrated the accuracy of Taylor’s approximation when

applied to a turbulent boundary layer for projection distances up to 6δ. The
production of both the spatial field and the corresponding field created using Taylor’s
approximation has enabled direct qualitative and quantitative comparisons to be
made. A visual examination of the two fields shows a striking similarity, although
some significant large-scale differences are also evident. The vast majority of the
differences occur in the latter half of the field. A quantitative analysis was performed
by correlating the appropriate spatial and Taylor fields. It was found that there was a
strong correlation between the two fields, and this correlation decreased approximately
linearly with projection distance. It has been proposed that a significant proportion
of the error between the two fields is due to small-scale motions that are not
maintained in time, and as such, are a source of consistent error. A method of
Fourier filtering has been used to filter out the small scales. The correlation was
found to increase significantly when the filtered fields were used. This suggests that
Taylor’s approximation can be used to a greater extent if it is only the large scales
that are of interest. However, care must be taken since excessive filtering will distort
the actual structures and lead to erroneous results.
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